The balanced equation for the combustion of methanol (CH3OH) is:
2 CH3OH (l) + 3 O2 (g) → 2 CO2 (g) + 4 H2O (g)
To calculate the standard enthalpy change (ΔH°), standard entropy change (ΔS°), and standard Gibbs free energy change (ΔG°) at 25°C, we can use standard thermodynamic values for the reactants and products:
1. **ΔH° Calculation:**
ΔH° for the reaction can be calculated using standard enthalpy of formation values (ΔH°f) from a table:
- ΔH°f (CH3OH) = -238.6 kJ/mol
- ΔH°f (CO2) = -393.5 kJ/mol
- ΔH°f (H2O) = -241.8 kJ/mol
Substituting these values into the formula:
ΔH° = [2(ΔH°f CO2) + 4(ΔH°f H2O)] – [2(ΔH°f CH3OH) + 3(ΔH°f O2)]
ΔH° = [2(-393.5) + 4(-241.8)] – [2(-238.6) + 3(0)]
Calculating this gives:
ΔH° = [-787 – 967.2] – [-477.2] = -1270.2 + 477.2 = -793 kJ
2. **ΔS° Calculation:**
ΔS° can be calculated using standard entropy values (S°):
- S° (CH3OH) = 126.0 J/(mol·K)
- S° (O2) = 205.0 J/(mol·K)
- S° (CO2) = 213.7 J/(mol·K)
- S° (H2O) = 188.8 J/(mol·K)
Using the formula:
ΔS° = [2(S° CO2) + 4(S° H2O)] – [2(S° CH3OH) + 3(S° O2)]
ΔS° = [2(213.7) + 4(188.8)] – [2(126.0) + 3(205.0)]
Calculating gives:
ΔS° = [427.4 + 755.2] – [252 + 615] = 1182.6 – 867 = 315.6 J/K
3. **ΔG° Calculation:**
Finally, we can calculate ΔG° using the relationship ΔG° = ΔH° – TΔS°.
At 25°C (298 K):
ΔG° = -793 kJ – (298 K)(315.6 J/K * 1 kJ/1000 J)
ΔG° = -793 kJ – (298 * 0.3156) kJ = -793 – 94.011 (approximately) = -887.0 kJ
4. **Spontaneity:**
A reaction is spontaneous if ΔG° < 0. Since ΔG° is -887.0 kJ, the combustion of methanol is indeed spontaneous at 25°C.